Halassa Lab

Project 2

Identify the role of thalamocortical interactions in economic decision making in dynamic environment:

The ability to use different strategies or schemas to deal with dynamic environments in decision making is essential for optimizing choices and outcomes. Multiple cortical areas are essential for economic decision making. Value coding in the Orbital frontal cortex has been extensively studied. Prefrontal cortex is involved in flexible  value coding and strategizing in decision making under dynamically changing environments. However, how those cortical-cortical and thalamocortical interactions are computing changing values, shifting strategies and executing decisions in such a challenging environment was unknown. To answer this question, we introduced parameterized decision-making tasks in mice in which the value of options are dynamically changing. Combined with circuit dissection and modelling approaches we are trying to understand how different cortical circuits and their interaction with thalamus are optimizing decisions in the dynamic environment. 

While strategization and executive functions are an important component of impaired cognitive function in schizophrenia, thalamocortical connectivity is known to be associated with impaired cognitive functions this disorder. Leveraging genetic mice models carrying the identical genetic alterations in schizophrenia patients combined with the approaches described above, we are aiming to develop circuit based therapeutic methods for improving cognitive function in schizophrenia. (TingRay Team).


Department of Brain & Cognitive Sciences
43 Vassar St
Cambridge, MA 02139


Monday – Friday: 10am – 5pm

you are welcome here

Halassa Lab is committed to creating a diverse environment. All qualified applicants will receive consideration for employment without regard to race, color, religion, gender, gender identity or expression, sexual orientation, national origin, genetics, disability, age, or veteran status.