




Figure S6: Analysis of SVM decoding for discrimination. (A) The TC firing rate with the tuned input as a function of the
neuron index after subtracting the baseline firing rate. This shows the tuning and overlap of stimulus input patterns. The
solid lines are fitted with top equations (Gaussian profile). (B) The TC firing rate as a function of the neuron index with the
tuned input. The firing rate does not clearly show any tuned profile. (C): The component profile of SVM weight vector as
a function of the neuron index. It shows that there are distinct peaks at the centers of the tuned Stimulus 1 (positive) and
Stimulus 2 (negative). (D)-(F) show the amplitude (a), the width (s ), and the baseline (b) of the firing rate profile under
Stimulus 1 of different strength and top-down modulation. The strength of the input and top-down modulation heavily
affects the amplitude of firing rate profile, while affect little of other factors. The value of each parameter is averaged by
values from the two inputs.
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Feature as function of
relative change in baseline firing rate

Feature as function of
relative change in output gain

Figure S7: Dependences of circuit and behavioral features on perturbations. (A)-(F) Various circuit and behavioral
measures as a function of varying TC baseline firing rate. (G)-(L): Same as (A)-(F) but as a function of varying output
gain.
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Figure S8: Effects of attention across time. (A) Schematic of paradigm, motivated by the experimental study of
Aizenberg et al. (2019). A step increase in tonic top-down excitation (IRE) to RE precedes, by a time lag tlag, a pulsed
stimulus input to TC (ITC). (B) Evoked response to pulsed stimulus input to TC. When tlag = 60 ms, preceding excitation
to RE suppresses TC spontaneous activity without affecting the peak evoked response of TC to the pulse input (solid
dark red), relative to control without RE activation (dashed). However, the peak evoked response of TC is reduced in the
case of tlag = 260 ms (light red). In this amplification scenario, excited RE neurons hyperpolarize TC neurons, activate
its T-type Ca2+ channel, and resulted in the synchronous burst activity. These dynamics may related to experimental
findings that thalamic burst spiking activity can facilitate the transmission of information to the cortex (Whitmire et al.,
2016; Alitto et al., 2019). (C) TC response (i.e., the difference between maximum and minimum activity) as a function
of RE activation strength and the time lag between RE and TC input onset. There is an enhancement for moderate RE
activation strengths that is preferential for tlag of approximately 50–70 ms. (D) Detection accuracy, from a linear SVM
decoder, with (solid) or without (dashed) preceding RE activation, for tlag = 60 ms. Preceding RE activation substantially
improves detection accuracy. (E) Discrimination accuracy, from a linear SVM decoder, with (solid) or without (dashed)
preceding RE activation, for tlag = 60 ms. In contrast to detection, preceding RE activation does not have a substantial
effect effect on discrimination accuracy.
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